University of Houston-Downtown

Course Prefix, Number, and Title: BIOL 1312: Ecology and Environmental Biology

Credits/Lecture/Lab Hours: 3/2/2

Foundational Component Area: Life and Physical Sciences

Prerequisites: Completion or enrollment in ENG 1301 **Co-requisites:** None

Course Description: An integrated lecture/laboratory course for non-science majors. This course will include the scientific method and the relationship between science and technology. Major themes will include cells, organization of the human body and functions of organ systems. Issues related to human biology (ie. genetic engineering, human reproduction) will also be discussed. Laboratory activities will be investigative in nature and relate to lecture topics.

TCCNS Number: NA

Assigned Core	Learning Outcome	Instructional strategy or Method by which stud			
Objective	Students will be able to:	content used to achieve the	mastery of this outcome will be		
		outcome	evaluated		
Critical Thinking	Utilize scientific	1) Hypothesis	1) Students work in teams,		
	processes to identify	Development and/or	or on their own, to develop		
Empirical &	questions pertaining to	Experimental Design	hypotheses, and/or ways to test		
Quantitative	natural phenomena.		them. Mastery of hypothesis		
Reasoning		Example Activity:	development is evaluated based		
		a. Ecology Case: The	on evidence of reasoning,		
		Effects of Coyote Removal in	comprehension, and quality.		
		Texas (class and/or online	Experimental design is		
		activity) – Students propose an	evaluated based on applicability		
		experiment to test the effects	to the original question(s) and		
		of coyote removal on the	hypothesis/hypotheses,		
		remaining animal community,	identification of all variables,		
		and hypothesize immediate elimination of potentially			
		and continued effects of coyote	confounding variables, and		
		removal. Students analyze	proper use of a control group.		
		example study data, and write	Additional Methods of		
		a summary about the effects of	Assessment Specific to Example		
		coyote removal.	<u>Activity</u> :		
			a. Ecology Case: The Effects		
		2) Evaluating Sources of	of Coyote Removal in Texas		
		Scientific Information	(class and/or online activity) –		
			Accuracy and quality of student		
		Example Activity:	hypotheses, experimental		
		a. Global Warming (class	design components, results		

Demonstration of Core Objectives within the Course:

		and/or online activity) –	interpretations, and ecological		
		Students select online articles	relevance are assessed in		
		on global warming from an	responses and a short essay.		
		instructor-provided list, and	Students are to summarize the		
		evaluate the reliability of the	impacts of coyote removal on		
		information and source itself.	the remaining community.		
			Students are expected to		
			describe the loss of biodiversity		
			and the difficulty of predicting		
			the consequences of		
			environmental manipulation.		
			This assignment is evaluated		
			using a grading rubric.		
			Students evaluate the reliability		
			of scientific information from		
			secondary sources. Students		
			are taught how to identify "red		
			flags," and their ability to		
			critically evaluate the source is		
			assessed. Students collaborate		
			in the evaluation of scientific		
			evidence from multiple		
			perspectives, thus are also		
			evaluated on participation.		
			Additional Methods of		
			Assessment Specific to Example Activity:		
			a. Global Warming (class		
			and/or online activity) –		
			Students are to evaluate online		
			articles from an instructor-		
			provided list. Identification of as		
			many "red flags" as possible is		
			extremely important in this		
			activity. Students are evaluated		
			on their ability to recognize "red		
			flags" using a worksheet, and on		
			their overall summary/		
			explanation of a source's		
			reliability.		
Critical Thinking	Utilize scientific	1) Hypothesis Testing	1) Students develop		
	processes to develop		hypotheses and collect and		
Empirical &	hypotheses, collect and	Example Activity:	analyze data. Mastery of		
Quantitative	analyze data using	a. Genetic Drift in the Lab	hypothesis development is		
Reasoning	quantitative and	(lab activity) – Students will use	evaluated based on evidence of		
	qualitative measures.	the random "grabbing" of	reasoning, comprehension, and		

	1		
		different colored beads out of a	quality. Students are also
		bag (without peaking),	evaluated on data collection and
		representing different alleles in	analysis techniques.
		a population, to investigate	Additional Methods of
		how genetic drift alters allele	Assessment Specific to Example
		frequencies.	<u>Activity</u> :
			a. Genetic Drift in the Lab
		b. Genetic Drift Analysis	(lab activity) – Teams collect
		(online activity) – Students	allele frequency data from
		investigate example scenarios	"grab" rounds, and organize this
		of colored marbles randomly	information into a graph to
		poured or extracted from a	display their results. Teams
		container, representing	communicate their results in
		different alleles in a	class and on paper. Teams are
		population, to investigate how	evaluated on hypothesis
		genetic drift alters allele	development, data analysis, and
		frequencies, and will explore	communication of results.
		and describe examples in	
		nature and in human	b. Genetic Drift Analysis
		populations.	(online activity) – Students
			analyze frequency data from
			example scenarios of genetic
			drift, including population
			bottleneck and founder effect.
			Students are required to explain
			what factors contribute to
			genetic drift, and to apply what
			they have learned by proposing
			hypotheses regarding genetic
			drift in additional scenarios.
			Student comprehension of
			genetic drift and hypothesis
			development are also assessed
			based on the quality and
			completion of these items.
Critical Thinking	Utilize scientific	1) Written, Oral, and	1) Students present their
	processes to effectively	Visual Communication	work in written, oral, and visual
Empirical &	communicate the analysis		formats, and are evaluated on
Quantitative	and results using written,	Example Activity:	effective communication using a
Reasoning	oral and visual	a. Environmental Issues	rubric.
	communication.	Project (class and/or online	
Communication		activity) – Students select an	Additional Methods of
		environmental issue to	Assessment Specific to Example
		research and communicate to	Activity:
		the class using written, oral,	a. Environmental Issues
		and visual communication.	Project (student project) –
			Students research and present
			stadents research and present

			an an incompany to the state
			an environmental issue in detail,
			and must include (1)
			background on the topic, (2)
			evaluation of scientific evidence
			on the topic, (3) description of
			ecological/environmental
			impacts, (4) description of
			economic impacts, and (5)
			discussion of current and future
			focuses. Students communicate
			in written, oral, and visual
			platforms, and evaluate peer
			projects. Two rubrics are used
			as a guide for the evaluation of
			-
Taana	Callabarsta in the		these items.
Teamwork	Collaborate in the	1) Collaboration in the	1) Students collaborate in
	evaluation of the quality	Evaluation of the Quality of	the evaluation of scientific
	of scientific evidence	Scientific Evidence in the	evidence from multiple
	from multiple	Laboratory	perspectives, thus are also
	perspectives toward the	Example Activity:	evaluated on participation.
	goal of reaching a shared	a. Morphological Basis of	
	objective.	Human Race Classifications (lab	Additional Methods of
		activity) – Students assign	Assessment Specific to Example
		photographs of people to	Activity:
		"race" categories created by	a. Morphological Basis of
		students, which may or may	Human Race Classifications (lab
		not align with present social	activity) – Students propose
		convention, based upon	"race" groupings using their
		phenotypic characteristics the	own proposed expected physical
		students have initially	characteristics (hypothesis
		hypothesized to be expected in	development), and evaluate the
		these "race" categories.	accuracy of these groupings,
		Students then evaluate the	when held under biological
		accuracy of these groupings,	expectations for "race"
		when held under biological	(subspecies) groupings.
		expectations for "race"	Students communicate their
		(subspecies) groupings.	conclusions in the
		(accompanying worksheets from
		2) Collaboration in the	our lab manual, and are
		Evaluation of the Quality of	evaluated on proper hypothesis
		Scientific Evidence using the	development strategy, ability to
		Online Discussion Board	
			communicate their findings on
			paper, and on whether or not
		Example Activity:	the statements in these findings
		a. Discussion Board	are supported by results within.
		Communication: Ecology and	
		Evolution Q&A Discussion	2) Students evaluate

(online activity) – Students	scientific evidence from multiple
use/explain scientific reasoning	perspectives in the online
and evidence of the	discussion board. Students are
endosymbiotic theory, plant	to communicate with peers
evolution, and tetrapod animal	online to lend supporting and/or
evolution. Students	refuting evidence to peer posts.
collaborate through the sharing	Student communications are
and evaluation of this	evaluated for accuracy, evidence
information.	of critical thought, and the merit
	of any proposed hypotheses
	and/or presented information.
	Additional Methods of
	Assessment Specific to Example
	Activity:
	a. Discussion Board
	Communication: Ecology and
	Evolution Q&A Discussion
	(online activity) – Student
	communications are evaluated
	for accuracy, evidence of critical
	thought, and the merit of any
	proposed hypotheses. Students
	are required to use/explain
	scientific reasoning and
	evidence behind all posts and
	discussions.
	discussions.

Additional Course Outcomes:

Students will:

- utilize the scientific process to identify questions pertaining to natural phenomena,
- develop hypotheses,
- collect and analyze quantitative and qualitative data,
- collaborate in the evaluation of the quality of scientific evidence from multiple perspectives toward the goal of reaching shared objective, and
- communicate analyses and results using written and oral communication.

After completing this course, students will:

- understand the scientific process and how problems are solved in science,
- understand how science provides explanation of cause and effect relationships in natural phenomena,
- be able to apply scientific reasoning to observations of natural phenomena,
- understand the history and modern application of important concepts in the natural sciences,
- understand how science is perceived by society, how the history of science and our modern world are intertwined, and how science continues to impact society today;
- be able to distinguish arguments that are based on scientific reasoning versus those that are not.

Course Outline:

- Fundamentals of Science and Biology scientific study of life (chapter 1); cells (chapter 3); basic chemistry (chapter 2.1-2.5)
- Climate and Biomes –
 preparatory information on energy (chapter 4.1), photosynthesis (chapter 5.1-5.4), and aerobic cellular respiration (chapter 6.1-6.3); the carbon cycle (chapter 19.7B); global warming (chapter 20.4 and supplemental information); climate and biomes (chapter 19.1-19.3)
- Introduction to Evolution preparatory information on basic genetics (chapter 10.1, 10.2, 10.9); forces of evolution (chapters 12, 10.10, 22.7, 18.7); evidence of evolution (chapters 13, 8.7, 28.11)
- Macroevolution speciation and extinction (chapter 14); human evolution and "races" (chapters 17.12, 11.5, 7.11, 10.9, 23.6 and supplemental information)
- The Unity and Diversity of Life life's origins, prokaryotes, and evolution of the eukaryotic cell (chapter 15.1-15.3); protists and fungi (chapter 15.4-15.5); plants (chapter 16.1-16.5); animals (chapter 17.1-17.11, 17.13)
- Introduction to Ecology population ecology (18.1-18.6); communities and ecosystems (chapters 19, 15.6)
- Biodiversity: threats and preservation -

Threats (chapter 20.1-20.5, 20.7 and supplemental information); conservation biology (chapter 20.6 and supplemental information)

• Topics in Environmental Science –

This module covers selected human activities and their environmental impacts. Specific environmental issues are to be explored (e.g., agriculture, water, energy, etc.). Coverage will be from selected textbook topics, *The Habitable Planet* website (<u>http://www.learner.org/courses/envsci/index.html</u>), instructor-provided supplemental information, and student projects on environmental issues. Student projects.

Grading/Course Content which Demonstrates Student Achievement of Core Objectives:

Course Grade	A: 90-100	B: 80-89	C: 70-79	D: 60-69	F: 0-59
				Relative	Grade
Module 1 – Fundamentals of Science and Biology					100 pts.
Module 2 – Climate and Biomes					100 pts.
Module 3 – Introdu	uction to Evolution	า			100 pts.
Module 4 – Macro	evolution				100 pts.
MIDTERM EXAM					100 pts.
Module 5 – The Unity and Diversity of Life					100 pts.
Module 6 – Introduction to Ecology				100 pts.	
Module 7 – Biodiversity: threats and preservation*				100 pts.	
Module 8 – Student Projects and Topics in Environmental Science*					100 pts.
FINAL EXA	М				100 pts.
			TOTAL POI	NTS	1000 pts.
Points in Each Mod	ule: Each module	includes 100 noir	nts Thorois at l	east one 50 noir	nt evam in each

Points in Each Module: Each module includes 100 points. There is at least one 50 point exam in each module.

*NOTE: Environmental Issues Project: Students select an environmental issue to explore, describe, and evaluate from a provided list in module 7. In module 8, students post a video presentation on their topic in the classroom discussion board, and receive two separate grades from the project, one based on **content (30 points)**, and another on **oral communication (20 points)**. This module also has a 50 point exam.