University of Houston-Downtown

Course Prefix, Number, and Title: CHEM 1307: General Chemistry *

Credits/Lecture/Lab Hours: 3/0/0

Foundational Component Area: Life and Physical Sciences

Prerequisites: Credit or enrollment in MATH 1301 and CHEM 1107 and one year of high school

chemistry or CHEM 1305/1105.

Co-requisites: None

Course Description: The first in a two course survey of the fundamentals of general chemistry for students majoring in the sciences. Descriptive material is correlated with the basic chemical principles and their applications. Modern concepts of atomic and molecular structure, chemical bonding, the gaseous state and the kinetic molecular theory of matter will be analyzed. There will be emphasis on stoichiometeric calculations of mass and molar relationships, energy relations and intermolecular forces.

TCCNS Number: CHEM 1311

Demonstration of Core Objectives within the Course:

Assigned Core Objective	Learning Outcome Students will be	Instructional strategy or content used to achieve the outcome	Method by which students' mastery of this outcome will be evaluated
	able to:	outcome	
Critical	Utilize scientific	1. Knowledge and	1. The knowledge and comprehension of
Thinking	processes to	Comprehension of the	the various types of matter, along
	identify questions	Various Types of Matter	with other chemical principles, will be
Empirical &	pertaining to	Present in the Universe.	assessed in the CHEM 1307 by the use
Quantitative	natural	Through lecture, observation	of on-line or written homework
Reasoning	phenomena.	and laboratory experience,	assignments, on-line or in-class
		students will classify	quizzes, in-class testing, and a
		materials into states of	standardized comprehensive exam
		matter, identify the	prepared
		transitions between them,	by the American Chemical Society
		and be able to differentiate	(ACS). The results of this latter
		elements, compound and	assessment activity will be compared
		mixtures providing examples	and analyzed with respect to national
		of each.	norms and statistics as well as 20+
			years of UHD ACS exam records. The
		2. Knowledge and	results from the ACS testing will be
		Comprehension of the	used as an indicator for overall student
		atomic structure and	performance in general chemistry.

		chemical properties of	
		elements from their position	2. Students will work in teams to
		on the periodic table – In	examine the effects of electricity
		conjunction with the co-	passing through different elements,
		requisite CHEM 1107	determining if there is a correlation
		laboratory, students will	between electron configuration and the
		develop knowledge of the	natural phenomena of colored light
		model of an atom. This	emission. Teams will complete
		includes quantum theory,	worksheets showing their calculations
		and facilitates the predicting	which will be included in the lab book
		of light producing electron	for grading.
		transitions.	101 8.44.118
			3. Students will perform calculations
			demonstrating the relationship
			between bond formation, bond
			breaking, thermal, potential, and
			chemical energies, and the heat
			involved in a chemical reaction. They
			will be evaluated in this exploration
			through the use of homework
			problems, and exam or quiz questions.
			4. Students will perform experiments
			involving chemical reactions in the co-
			requisite laboratory and will do
			calculations on homework, quizzes
			and exams, in lab and/or Recitation
			sessions.
			5. Students will use VSEPR (valence shell
			electron pair repulsion) theory and Lewis
			dot structures to explain and predict the
			shapes of molecules. Through the use of
			models, students will visualize how
			molecular three- dimensional geometries
			affect the physical properties of
			substance in nature. Evaluations will
			involve drawings, homework problems,
			and exam questions
Critical	Utilize scientific	In the co-requisite lab:	1. Students will keep a laboratory
Thinking	processes to	1. Laboratory	notebook and learn to
	develop	experiments - Students	record careful observations, draw
Empirical &	hypotheses,	will demonstrate the	appropriate conclusions and reflect on
Quantitative	collect and	ability to carry out simple	what they have learned. The assessment
Reasoning	analyze data using	laboratory experiments (in	will be carried out by grading lab reports
	quantitative and	the co- requisite	and evaluating unknown materials in
	qualitative	laboratory course) using	laboratory experiments. Learning in each
		2	

	maacurac	common chemical	Jahoratory experience is further
	measures.	common chemical measuring devices, SI units, and safety precautions. Every lab experience requires the written record of observations, both quantitative and qualitative, the analyses of these observations, and the drawing of conclusions. 2. Hypothesis Testing - Students will form hypotheses concerning whether clear solutions are identical in composition or not. They will use qualitative methods of data collection while working in a small team environment.	laboratory experience is further evaluated by both pre- and post-lab assignments and a quiz. 2. Students will work in teams to collect data when they examine the effect of combining different solutions of known composition. Students will create a sequential diagram for precipitation. They will then use this information to determine the composition of several unknown solutions. The assessment will consist of pre- and post- assignments and quizzes as well as an evaluation of the accuracy of their conclusions
Critical Thinking Empirical & Quantitative	Utilize scientific processes to effectively communicate the analysis and	Example: Identification of an unknown substance — Students will determine the identity of unknown substances. The hypothesis is that it is possible to determine the identity of a substance from its solubility properties when it is formed by the mixing of two compounds in solution. Team Projects — Working in small teams, students will develop a single research project, such as those listed below, that will	1. Students will work in small groups to develop a demonstration of an experiment suitable for a General Chemistry laboratory. Peer review will supplement the faculty assessment of
Reasoning Communication	analysis and results using written, oral and visual communication.	below, that will be presented to the class in an appropriate format. Examples: 1. Project to Develop Lab	the presentation and the written manuscript. Both oral presentation and written assignments will be assessed using a rubric. 2. Students will work in groups to

		E Ct. da t	
		Experiment – Students will	research all aspects of a current topic
		select an experiment or	with an application to chemistry, write
		demonstration that is	a research paper following a specific
		suitable for CHEM 1107	rubric, and then synthesize a creative
		laboratory and develop it	exposition with both an oral and visual
		for presentation	component. Evaluation will involve a
		2. Current Event	peer review of the project and its
		Research Topic -	presentation.
		Students will design and	
		execute a team	
		presentation of all facts	
		and arguments	
		surrounding a topic of	
		their choice that is	
		currently in the news.	
Teamwork	Collaborate in the	1. Chemical Safety –	1. Student will work in teams to
	evaluation of the	Students will watch a	demonstrate examples of best
	quality of	presentation about chemical	practices in chemical safety. Student
	scientific evidence	safety and determine if their	participation in this activity will be
	from multiple	safety practices are	recorded on a graded worksheet or
	perspectives	adequate.	notebook.
	toward the goal of	•	
	reaching a shared	2. Current Event Research	2. Students will work in groups to
	objective.	Topic - Students will	research all aspects of a current topic
	objective.	design and execute a team	with an application to chemistry, write
		presentation of all facts	a research paper following specific
		and arguments	guidelines, and then synthesize a
		surrounding a topic of	creative exposition with both an oral
		their choice that is	and visual component. Evaluation will
		currently in the news.	involve a peer review of the project
		carrently in the news.	and its presentation. Faculty
			assessment will follow a rubric for
			oral and written communication.
	I .		oral and written communication.

Additional Course Outcomes:

Lecture:

- State a clear definition of chemistry.
- Speak and write the basic language and symbols of chemistry.
- Describe and use the scientific method.
- Understand and use scientific notation, significant figures, and the metric and SI systems of measurement.
- Readily identify the various types of matter.
- State the difference between physical and chemical properties.
- Write, balance, and interpret chemical equations.
- Describe the types of reactions that take place in aqueous (water-based) solutions.

- Solve mathematical problems related to stoichiometry, gas laws, and thermochemistry.
- Describe the laws governing the behavior of gases and the kinetic-molecular theory that is used to explain those laws.
- Understand the relationship of the Periodic Table to atomic masses, atomic numbers, electronic configurations, chemical bonding, and the properties of the elements.
- Describe the nature of intermolecular attractive forces and how they produce the solid and liquid states of matter.

Lab:

- Work SAFELY in the laboratory
- Keep an accurate record of laboratory results
- Make careful observations and draw valid conclusions
- Predict the effects of errors on experimental results
- Make measurements using appropriate laboratory equipment
- Handle liquids, solids, and gases appropriately
- Use correct laboratory terminology
- Perform titrations with accuracy and precision

Course Topics

Lecture:

- Matter, Measurement, and Problem Solving
- Atoms and Elements
- Molecules, Compounds, and Chemical Equations
- Chemical Quantities and Aqueous Reactions
- Gases
- Thermochemistry
- Quantum Mechanical Model of the Atom
- Periodic Properties of the Elements
- Chemical Bonding I: Lewis Theory
- Chemical Bonding II: Molecular Shapes, Valence Bond Theory and Molecular Orbital Theory
- Liquids, Solids, and Intermolecular Forces

Lab

- Introduction/Lab Check-In/ Safety Video/Dimensional Analysis Pre-Lab
- Lab Measurements: Significant Figures
- Density Determination
- Separation of the Components of a Mixture
- Periodic Table: Elements and their Atomic Structures
- Determination of the Empirical Formula of a Metal Oxide
- Chemical Reactions and Their Classification
- Double Replacement Reactions
- Single Displacement Reactions/Writing and Balancing Equations
- Standardizing a Basic Solution
- Nine Solutions and Their Interactions (Part A)

Lecture Grading/Course Content which Demonstrates Student Achievement of Core Objectives: Course Grade A: 90-100 B: 80-89 C: 70-79 D: 60-69 F: 0-59

	7.1. 50 200	2.000		2.0005		
	Summary of Course Exams, Quizzes, Activities, and Final					
4 Exami	inations (Final exa	m replaces lowest)		40%		
MGC Homewo	ork Assignments (L	owest 2 will be dro	oped)	9%		
4 MGC	Quizzes (5% each	, lowest dropped)		15%		
i>Clicker Par	ticipation (Correct 100/50	Answer/Participation	on =	6%		
	Final Exa	m		20%		
	5 Special Assig	nments		10%		

Lab-Grading/Course Content which Demonstrates Student Achievement of Core Objectives: Course Grade A: 90-100 B: 80-89 C: 70-79 D: 60-69 F: 0-59

iise diade	A. 30-100	D. 80-85	C. 70-73	D. 00-03	1.0-3.
	Summary of Cou	rse Exams, Qui	zzes, Activitie	s, and Final	
	Qu	iizzes		40%	
	Pre-lab	Questions		5%	
	Lab Reports/Po	ost Lab Question	ns	15%	
	Team Project	s/Presentations		10%	
	Practical Fin	al Examination		10%	
	Written Fina	al Examination		20%	