University of Houston-Downtown

Course Prefix, Number, and Title: CHEM 1308: General Chemistry II

Credits/Lecture/Lab Hours: 3/0/0

Foundational Component Area: Life and Physical Sciences

Prerequisites: A grade of C or better in CHEM 1307 and credit or enrollment in CHEM 1108.

Co-requisites: None

Course Description: The second in a two-course survey of the fundamentals of general chemistry for students majoring in the sciences. Topics include liquids and solids, intermolecular forces, chemical kinetics, thermodynamics, homogeneous, heterogeneous and ionic equilibrium, modern concepts of acids and bases, electrochemistry, coordination chemistry, nuclear chemistry and selected topics.

TCCNS Number: CHEM 1312

Demonstration of Core Objectives within the Course:

Assigned Core	Learning Outcome	Instructional strategy or content	Method by which students'
Objective	Students will be able to:	used to achieve the outcome	mastery of this outcome
			will be evaluated
Critical Thinking	Utilize scientific	1. Hypothesis Testing – students will	1. The students will work in
	processes to identify	generate hypothesis questioning the	teams to collect data to
Empirical &	questions pertaining to	claim in chemical kinetics that	examine the effect of
Quantitative	natural phenomena.	"Reaction orders are not necessarily	changes in concentration in
Reasoning		the stoichiometric coefficients of the	the determination of
		reactants."	reaction orders to test the
			hypothesis that reaction
		2. Students will complete online	orders are not the same as
		assignments which require the	reactant coefficients and
		students to examine and solved	they must be
		questions concerning chemical	experimentally determined.
		phenomena. The online system used	Teams will complete a
		is Mastering Chemistry.	worksheet showing their
			calculations which will be
		3. Knowledge and Comprehension of	included in a lab report for
		Chemical Principles – Students will	grading.
		use scientific processes to solve	
		problems and examine sets of	2. The assessment consists
		questions regarding chemical	of scores calculated based
		phenomena and they will identify	on the number of problems
		the correct answers accordingly.	solved correctly per online

		The problems and sets of questions will be based on all the following topics:	assignment. 3. The knowledge and comprehension of chemical principles will be assessed by the use of a standardized exam prepared by the American Chemical Society. The results of the examination will be compared and analyzed against national norms and statistics, and will be used as an indicator for overall student performance in general chemistry. The use of exams prepared by the ACS is required in the chemistry courses in order to maintain the ACS accreditation for the chemistry degree programs.
Critical Thinking Empirical & Quantitative Reasoning	Utilize scientific processes to develop hypotheses, collect and analyze data using quantitative and qualitative measures.	1. Laboratory experiments - students will perform laboratory experiments in CHEM 1108 to collect data in the laboratory, create graphs, compare quantitative data and draw conclusions about the data obtained. 2. Hypothesis Testing: Colligative properties – students will form hypotheses regarding the claim made in Solutions Chemistry regarding "Quantity matters while identity does not". Student will analyze and use numerical methods to data collected in a group activity.	1. Students will keep a laboratory notebook and learn to record careful observations, draw appropriate conclusions and reflect on what they have learned. The assessment will be carried out by grading lab reports using defined rubrics. 2. The students will work in teams to record the temperature of solutions as a function of time. They will graph cooling curves which they will use to determine the cryoscopic constant of

		Example: Molar mass determination of an unknown substance – students will determine the molar mass of an unknown substance. The hypothesis is that it is possible to determine molar masses from the colligative properties of substances when they form solutions.	the solvent. They will utilize the collected data to correctly determine the molar mass of an unknown substance. The students will be provided with the true molar mass and will conclude if the colligative properties are a good measure of molar mass determination. The assessment will consist of pre- and post- assignment quizzes.
Critical Thinking Empirical & Quantitative Reasoning Communication	Utilize scientific processes to effectively communicate the analysis and results using written, oral and visual communication.	1. Electrochemical Cell Panel Discussion – Students will design an effective fuel cell or alternative electrochemical cell based on guidelines from the Electrochemical Society (http://www.electrochem.org/) 2. Blackboard Learn Online Discussions – Top student performers from CHEM 1307/1107 will be selected to lead forum discussions on selected chemistry topics via online Blackboard Learn site.	1. Students will design a theoretical fuel cell or alternative electrochemical cell based on guidelines from the Electrochemical Society, follow their plan for one week, and then report their experience. Students will make oral presentations with visual aids which will be assessed using a rubric. 2. Blackboard Learn will be used as a platform for students to engage in forum discussions related to the chemistry topics presented in class. Students who earned a grade of B or better will be selected to lead these forum discussions. The level of individual engagement in the discussion will be assessed and assigned a grade.

Teamwork	Collaborate in the	1. Chemical Safety – Students will	1. Student will work in
	evaluation of the quality	watch a presentation about chemical	teams to demonstrate
	of scientific evidence	safety and determine if their safety	examples of best practices
	from multiple	practices are adequate.	in chemical safety.
	perspectives toward the		
	goal of reaching a shared	2. Professional Ethics in Chemistry:	
	objective.	Students will identify one ethical	2. Students will write
		issue in chemistry that can be	position papers from the
		studied using the scientific method	perspective of different
		or is the result of scientific	stakeholders. Position
		misconduct.	papers will be assessed
			using a rubric.

Additional Course Outcomes:

Lecture: N/A

Lab:

- Work SAFELY in the laboratory
- Keep an accurate record of laboratory results
- Make careful observations and draw valid conclusions
- Predict the effects of errors on experimental results
- Read laboratory instruments such as a pH meter, a buret, and a spectrophotometer correctly
- Handle liquids, solids, and gases appropriately
- Use correct terminology to describe solutions
- Determine the molar mass of materials using colligative properties of solutions
- Analyze unknown solutions for cations and ions
- Perform titrations with accuracy and precision
- Determine the rate and order of a reaction (reaction kinetics)

Course Topics

Lecture:

- Solution Chemistry
- Kinetics
- Equilibrium
- Acid/Base Equilibrium
- Aqueous Ionic Equilibrium
- Thermodynamics Second and Third Laws
- Electrochemistry
- Radioactivity and Nuclear Chemistry
- Organic Chemistry
- Transition Metal Complexes

Lab

- Lab Safety
- Heat of Neutralization
- Molecular Mass Determination using Freezing Point Depression.
- PROP 344 (continuation)
- KINE 505 Rate of Reaction
- Chemical Equilibrium
- Standardizing of a Sodium Hydroxide Solution
- Acid/Base Titration
- Determination of pH of strong acid, weak acid, salt and buffer
- Preparing Tetraamine Copper (II) Sulfate
- Monohydrate

Lecture Grading/Course Content which Demonstrates Student Achievement of Core Objectives: Course Grade A: 90-100 B: 80-89 C: 70-79 D: 60-69 F: 0-59

Summary of Course Exams, Quizzes, Activities, and Final		
4 Examinations (Final exam grade replaces	50%	
lowest grade)		
Mastering General Chemistry	25%	
1 Final Exam	25%	

Lab-Grading/Course Content which Demonstrates Student Achievement of Core Objectives: Course Grade A: 90-100 B: 80-89 C: 70-79 D: 60-69 F: 0-59

Summary of Course Exams, Quizzes, Activities, and Final		
Quizzes	30%	
Pre-lab Questions	10%	
Lab Reports/Post Lab Questions	25%	
Team Projects/Presentations	5%	
Practical Final Examination	10%	
Written Final Examination	20%	