University of Houston-Downtown

Course Prefix, Number, and Title: GEOL 1304: Introduction to Meteorology

Credits/Lecture/Lab Hours: 3/2/2

Foundational Component Area: Life and Physical Sciences

Prerequisites: None **Co-requisites:** None

Course Description: An integrated lecture/laboratory course for non-science majors. This course will focus on the study of the atmosphere – its composition, structure and properties with emphasis on the processes responsible for weather, climate controls and change and the impact of atmospheric phenomena on society. Students will collect, analyze and synthesize online, real-time weather data in order to understand current weather conditions and be able to make predictions of future weather circumstances.

TCCNS Number: N/A

Demonstration of Core Objectives within the Course:

Assigned Core	Learning Outcome	Instructional strategy or content	Method by which students'	
Objective	Students will be able to:	used to achieve the outcome	mastery of this outcome	
			will be evaluated	
Critical Thinking	Utilize scientific processes	Comprehension of Meteorology –	Students' ability to	
	to identify questions	Students will use scientific	understand phenomena is	
Empirical &	pertaining to natural	processes to analyze questions	addressed through exams	
Quantitative	phenomena.	about the natural phenomena	and quizzes.	
Reasoning		covered in the field of		
		meteorology. These processes		
		include: weather, climate		
		controls an change, and the		
		impact of atmospheric		
		phenomena on society.		
Critical Thinking	Utilize scientific processes	Students will work on laboratory	Lab exercises will be	
	to develop hypotheses,	exercises that are related to	submitted electronically and	
Empirical &	collect and analyze data	lecture topics and require them	evaluated. Students will	
Quantitative	using quantitative and	to analyze real-time data online	also be given exams where	
Reasoning	qualitative measures.	using data from the American	they demonstrate	
		Meteorological Society.	comprehension of topics	
			covered in lab.	
		For example, Weather Formation		
		Case: Students must propose an		
		experiment to test the use of		
		pressure block concept to		

	<u> </u>		
Critical Thinking Empirical & Quantitative	Utilize scientific processes to effectively communicate the analysis and results using written, oral and visual communication.	demonstrate the influence of air density and air temperature on change in air pressure with altitude, and hypothesize development of clouds. Students must quantitatively and qualitatively analyze example study data and write a summary. Students will create a presentation that contains both visual and oral components over a topic in meteorology.	This class is often taught online. As such, an oral presentation has never been included in this online
Reasoning Communication		For example, students might analyze global warming data and present.	course. By 2014 (when the course will be taught with these new guidelines) an oral presentation will be required. Students will have to give an oral presentation using either Skype or Collaborate available in Black Board Learn. The presentation will be evaluated on scientific merit and communication skills using a rubric.
Teamwork	Collaborate in the evaluation of the quality of scientific evidence from multiple perspectives toward the goal of reaching a shared objective.	Students will be assigned some assignments in groups online. Students will have to work collaboratively (online) to complete the assignment (analysis of online data). For example, Cloud Composition Analysis where students must predict cloud composition (type) based on air pressure, temperature and elevation distributions.	Successful completion of the exercise (which required groups working together) will be incorporated into the grade for the course. Students will submit an assessment of team-work contributions to the instructor and this will be used to determine a percentage of the grade.

GEOL 1304: Introduction to Meteorology

Additional Course Outcomes: N/A

Course Outline:

Lecture Topics:

INTRODUCTION/MONITORING WEATHER

ATMOSPHERE: ORIGIN, COMPARISON AND CIRCULATION

SOLAR AND TERRESTRIAL RADIATION

HEAT, TEMPERATURE AND ATMOSPHERIC CIRCULATION

AIR PRESSURE

HUMIDITY, SATURATION, AND STABILITY

CLOUDS, PRECIPITATION, AND WEATHER RADAR

WIND AND WEATHER

ATMOSPHERES PLANETARY CIRCULATION

WEATHER SYSTEMS OF MIDDLE LATITUDES

THUNDERSTORMS AND TORNADOES

TROPICAL WEATHER SYSTEMS

WEATHER ANALYSIS AND FORECASTING

LIGHT AND SOUND IN THE ATMOSPHERE

CLIMATE AND CLIMATE CHANGE

Grading/Course Content which Demonstrates Student Achievement of Core Objectives: Course Grade A: 90-100 B: 80-89 C: 70-79 D: 60-69 F: 0-59

Summary of Course Exams, Quizzes, Activities, and Final						
	Quizzes and Assignments		20%			
	Investigates Exercises (Lab Projects)		15%			
	Oral Presentation		5%			
	Interim Tests (20% each)		40%			
	Final		20%			
	Tota	al	100%			