University of Houston-Downtown

Course Prefix, Number, and Title: GEOL 1307: Planet Earth

Credits/Lecture/Lab Hours: 3/2/2

Foundational Component Area: Life and Physical Sciences

Prerequisites: None

Co-requisites: None

Course Description: An integrated lecture-laboratory approach to historical geology for non-science majors that will employ hand specimen and other techniques for the identification of fossils and will include major controversies involving evolution, as well as, discussion of the origin of life and coevolution of our planet and life on it. Exercises will teach principles of structure geology, sequence of events, fundamental stratigraphic concepts and graphic correlation. These topics will be united in interpretation of geologic maps and their application to human culture.

TCCNS Number: GEOL 1402

Assigned Core	Learning Outcome	Instructional strategy or	Method by which students'
Objective	Students will be able to:	content used to achieve the	mastery of this outcome will
		outcome	be evaluated
Critical Thinking	Utilize scientific processes	Evidence for Plate Tectonics –	Students will work in pairs on
	to identify questions	Students will use simple	a "Plate Tectonics" worksheet
Empirical &	pertaining to natural	mathematics to demonstrate	at the beginning of the
Quantitative	phenomena.	that the continents of South	semester (1 st or 2 nd day of
Reasoning		America and Africa are moving	class), to correctly calculate
		apart, and to get a sense of the	the rate at which South
		time required for continents to	America and Africa are
		migrate. (Same exercise as in	currently moving away from
		GEOL 1307 but this exercise is	each other. This exercise
		relevant to both classes.)	allows students to appreciate
			geologic time, and the great
			time spans required for the
		Stratigraphic Cross-Sections –	assembly and disassembly of
		Students are given well-log	continents.
		information, including depths,	
		fossil assemblages, rock types,	
		and formation thicknesses.	Students' results will be
		They then construct a	evaluated on the basis of: 1)
		stratigraphic cross-section on	completeness of the cross-
		graph paper and make	section, and 2) interpretations

Demonstration of Core Objectives within the Course:

		interpretations about the	of subsurface geology. Owing
		subsurface geology. Students	to the work required, this
		will gain an appreciation for	exercise is worth three lab
		graphic correlations using	grades.
		fossils and rock types.	
Critical Thinking	Utilize scientific processes	Evidence for Plate Tectonics –	Students will work in pairs on
	to develop hypotheses,	Students will use simple	a "Plate Tectonics" worksheet
Empirical &	collect and analyze data	mathematics to demonstrate	at the beginning of the
Quantitative	using quantitative and	that the continents of South	semester (1 st or 2 nd day of
Reasoning	qualitative measures.	America and Africa are moving	class), to calculate the rate at
_		apart, and to get a sense of the	which South America and
		time required for continents to	Africa are currently moving
		migrate.	away from each other. This
			exercise allows students to
		Understanding geologic time	appreciate geologic time, and
		using numbers – Students are	the great time spans required
		asked to contemplate large	for the assembly and
		numbers and to calculate, for	disassembly of continents.
		example, how many days,	,
		months, or years would be	Students work in small groups
		represented by one million	on the calculations. Their
		seconds and by one billion	results will be evaluated in
		seconds. Students gain an	class. and will serve as a
		appreciation for the differences	talking point for a class-wide
		between orders of magnitude	discussion on the geologic
		and the large numbers	time scale.
		commonly used in historical	
		geology.	
Critical Thinking	Utilize scientific processes	Students will work together in	Students will give oral
_	to effectively communicate	groups to analyze and give a	PowerPoint presentations in
Empirical &	the analysis and results	presentation on a geologic time	laboratory on a related topic
Quantitative	using written, oral and	period. The presentation will	assigned by the instructor. It
Reasoning	visual communication.	include an oral and visual	will be graded for both
_		component.	scientific and communication
Communication			quality using a rubric. There
			will be written communication
			in the worksheets turned in
			after lab exercises and the lab
			exams will be both one word
			and short answer.

Teamwork	Collaborate in the evaluation of the quality of scientific evidence from multiple perspectives toward the goal of reaching a shared objective.	Students will work together on lab exercises and on the geologic time presentations.	Students' understanding of geological concepts will evaluated on the basis of the final grade they get on worksheets, assignments, exams. Laboratory worksheets and assignments will require students to work together in groups to get at the most accurate answers.
----------	---	--	--

Additional Course Outcomes:

- to understand the rock cycle and to be able to identify common minerals and rocks using their physical properties,
- to understand the processes by which the common rocks are formed,
- to explain how rocks are weathered and eroded and to understand the importance of these processes,
- to obtain a working knowledge of how to read and interpret topographic and geologic maps,
- to recognize the geomorphologic features produced by gravity transfer, running water, ground water, glaciers, wind, waves, and currents,
- to be able to identify geologic structures, such as anticlines, synclines, faults, and unconformities, and to understand their significance,
- to develop a thorough understanding of the theory of plate tectonics, the kinds of plate boundaries and their significance, and the development and destruction of plates,
- to describe the gross internal structure of the Earth,
- to relate earthquakes, volcanoes, fold belts, ocean floor topography, and magnetic data by means of plate tectonic models,
- to understand the evolution of the Earth in relation to the other planets and objects in our solar system.

Course Outline

<u>Subject</u>	<u>Chapter</u>
Earth as a Planet; Minerals and Mineral Identification	2
Mineral Identification	3
LABOR DAY – NO CLASSES	
Mineral Identification	
Igneous Rocks, Volcanic and subvolcanic features	3, 4
Igneous Rock Identification	5
Sedimentary Rocks, Sedimentary processes	6
Sedimentary Rock Identification	6
Metamorphic Rocks, Metamorphic processes	7
Metamorphic Rock Identification	7
EXAM 1; Topographic Maps	9
	SubjectEarth as a Planet; Minerals and Mineral IdentificationMineral IdentificationLABOR DAY – NO CLASSESMineral IdentificationIgneous Rocks, Volcanic and subvolcanic featuresIgneous Rock IdentificationSedimentary Rocks, Sedimentary processesSedimentary Rocks, Metamorphic Rocks, Metamorphic Rock IdentificationEXAM 1; Topographic Maps

3

11/19/2013

	Topographic Maps	9
Oct 8, 10	Groundwater	10
	Groundwater processes	12
Oct 15, 17	Rivers & Streams	9
	Stream Processes	11
Oct 22, 24	Glaciers& Glacial Processes	11
	LAB EXAM	
Oct 29, 31	Deserts and Wind processes	12
	Desert processes	14
Nov 5, 7	Shoreline Processes	13
	Shoreline Processes	15
Nov 12, 14	Ocean Floor Geology; EXAM 2	16
	Geologic Structures	17
Nov 19	Geologic Structures	17
Nov 21-23	THANKSGIVING – NO CLASSES	
Nov 26, 28	Geologic Structures/Earthquakes and Seismic Activity	<i>10,</i> 14
	Seismic Activity	16
Dec 3, 5	Plate Tectonics	15, 17

FINAL EXAM:

Grading/Course Content which Demonstrates Student Achievement of Core Objectives:

Course Grade	A: 90-100	B: 80-89	C: 70-79	D: 60-69	F: 0-59
	Summary of Cou	ırse Exams, Qui	zzes, Activities,	and Final	
	Lab Exercises/Mastering Geology Exercises			20%	
	(group projects to i	nterpret data			
	Exams (20	@20% each)		40%	
(shoi	rt answer/essay questi	ons 25-40% of e	exam)		
	Oral Discussion	/Debates		Extra Credit	
	Lab Exa	m		20%	
	Final			20%	
	Total			100%	