University of Houston-Downtown

Course Prefix, Number, and Title: GEOL 1308: History of the Earth

Credits/Lecture/Lab Hours: 3/2/2

Foundational Component Area: Life and Physical Sciences

Prerequisites: None **Co-requisites:** None

Course Description: An integrated lecture-laboratory approach to historical geology for non-science majors that will employ hand specimen and other techniques for the identification of fossils and will include major controversies involving evolution, as well as, discussion of the origin of life and coevolution of our planet and life on it. Exercises will teach principles of structure geology, sequence of events, fundamental stratigraphic concepts and graphic correlation. These topics will be united in interpretation of geologic maps and their application to human culture.

TCCNS Number: GEOL 1402

Demonstration of Core Objectives within the Course:

Assigned Core	Learning Outcome	Instructional strategy or	Method by which students'
Objective	Students will be able to:	content used to achieve the	mastery of this outcome will
		outcome	be evaluated
Critical Thinking	Utilize scientific processes	Evidence for Plate Tectonics –	Students will work in pairs on
	to identify questions	Students will use simple	a "Plate Tectonics" worksheet
Empirical &	pertaining to natural	mathematics to demonstrate	at the beginning of the
Quantitative	phenomena.	that the continents of South	semester (1 st or 2 nd day of
Reasoning		America and Africa are moving	class), to correctly calculate
		apart, and to get a sense of the	the rate at which South
		time required for continents to	America and Africa are
		migrate. (Same exercise as in	currently moving away from
		GEOL 1307 but this exercise is	each other. This exercise
		relevant to both classes.)	allows students to appreciate
			geologic time, and the great
			time spans required for the
		Stratigraphic Cross-Sections –	assembly and disassembly of
		Students are given well-log	continents.
		information, including depths,	
		fossil assemblages, rock types,	
		and formation thicknesses.	Students' results will be
		They then construct a	evaluated on the basis of: 1)

		stratigraphic cross-section on graph paper and make	completeness of the cross- section, and 2) interpretations
		interpretations about the subsurface geology. Students will gain an appreciation for	of subsurface geology. Owing to the work required, this exercise is worth three lab
		graphic correlations using fossils and rock types.	grades.
Critical Thinking	Utilize scientific processes	Evidence for Plate Tectonics –	Students will work in pairs on
	to develop hypotheses,	Students will use simple	a "Plate Tectonics" worksheet
Empirical &	collect and analyze data	mathematics to demonstrate	at the beginning of the
Quantitative	using quantitative and	that the continents of South	semester (1 st or 2 nd day of
Reasoning	qualitative measures.	America and Africa are moving	class), to calculate the rate at which South America and
		apart, and to get a sense of the time required for continents to	Africa are currently moving
		migrate.	away from each other. This
		inigrate.	exercise allows students to
		Understanding geologic time	appreciate geologic time, and
		using numbers – Students are	the great time spans required
		asked to contemplate large	for the assembly and
		numbers and to calculate, for	disassembly of continents.
		example, how many days,	
		months, or years would be	Students work in small groups
		represented by one million	on the calculations. Their
		seconds and by one billion	results will be evaluated in
		seconds. Students gain an	class, and will serve as a
		appreciation for the differences	talking point for a class-wide
		between orders of magnitude	discussion on the geologic
		and the large numbers	time scale.
		commonly used in historical	
Critical Thinking	Utilize scientific processes	geology. Students will work together in	Students will give oral
Critical Hilliking	to effectively communicate	groups to analyze and give a	PowerPoint presentations in
Empirical &	the analysis and results	presentation on a geologic time	laboratory on a related topic
Quantitative	using written, oral and	period. The presentation will	assigned by the instructor. It
Reasoning	visual communication.	include an oral and visual	will be graded for both
		component.	scientific and communication
Communication		·	quality using a rubric. There
			will be written communication
			in the worksheets turned in
			after lab exercises and the lab
			exams will be both one word
			and short answer.

Teamwork	Collaborate in the	Students will work together on	Students' understanding of
	evaluation of the quality of	lab exercises and on the	geological concepts will
	scientific evidence from	geologic time presentations.	evaluated on the basis of the
	multiple perspectives		final grade they get on
	toward the goal of reaching		worksheets, assignments,
	a shared objective.		exams. Laboratory
			worksheets and assignments
			will require students to work
			together in groups to get at
			the most accurate answers.

Additional Course Outcomes: N/A

Course Topics:

- Intro; Review of Structural Geology & Plate Tectonics
- Relative Age Dating; Geologic Time Scale
- Absolute Age Dating (Geochronology)
- Formation of Solar System & Protoearth; the Hadean
- The Archean Eon
- The Proterozoic Eon
- The Paleozoic Era Cambrian & Ordovician Periods
- The Paleozoic Era Silurian & Devonian Periods
- The Paleozoic Era Carboniferous & Permian Periods
- The Mesozoic Era Triassic Period
- The Mesozoic Era Jurassic Period
- The Mesozoic Era Cretaceous Period
- The Cenozoic Era Paleocene & Eocene Epochs
- The Cenozoic Era Oligocene & Miocene Epochs
- The Cenozoic Era Pliocene & Pleistocene Epochs

Grading/Course Content which Demonstrates Student Achievement of Core Objectives: Course Grade A: 90-100 B: 80-89 C: 70-79 D: 60-69 F: 0-59

Summary of Course Exams, Quizzes, Activities, and Final			
Lab Exercises/Mastering Geology Exercises	15%		
(group projects to interpret data			
Exams (2@20% each)	40%		
Oral Presentation	5%		
Lab Exam	20%		
Final	20%		
Total	100%		