University of Houston-Downtown

Course Prefix, Number, and Title: MATH 1301: College Algebra

Credits/Lecture/Lab Hours: 3/3/0

Foundational Component Area: Mathematics

Prerequisites: Prerequisites: A grade of C or better in MATH 1300 or a TSI score of 350 or higher. **Co-requisites:** None

Course Description: College-level topics in algebra including variation, systems of equations, nonlinear inequalities, functions and their graphs, lines, quadratic equations and functions, complex numbers, polynomials, exponential and logarithmic functions, the algebra of functions, and applications related to these topics.

TCCNS Number: MATH1314

Assigned Core Learning Outcome Instructional strategy or Method by which Objective Students will be able to: content used to achieve the students' mastery of outcome* this outcome will be evaluated Critical Thinking Describe and **Content:** Functions and their Final Exam and Online Homework which communicate representations; types of mathematical information functions and their rates of Communication include: verbally, numerically, change; percent change; 1. Open-ended Empirical & graphically, and linear functions and models; discussion Quantitative symbolically. absolute values; quadratic questions where Reasoning functions, power functions, students have to exponential and logarithmic discuss functions. mathematical information or Instructional Strategies: data; Asking students to convert 2. Questions different representations of requiring functions into each other, find students to slope, x-intercept, y-intercept, create, analyze vertex, power laws, simplify and interpret and evaluate symbolic graphs and expressions, graph functions, charts; solve equations. 3. Peer-to-peer activity, where students should explain to each

Demonstration of Core Objectives within the Course:

			other orally
			their solution to
			a mathematical
			problem and/or
			concepts from a
			particular topic
			in mathematics.
Critical Thinking	Use appropriate	Content: Linear, quadratic,	Final Exam and Online
	mathematical techniques	piecewise, and power	Homework.
Empirical &	to model situations from a	functions and models;	
Quantitative	variety of settings,	midpoint formula; percent	
Reasoning	including real-world	change; problem solving in	
	applications in generalized	applications.	
	mathematical forms.		
		Instructional Strategy: Asking	
		students to extrapolate and	
		interpolate data, convert data	
		given by graphs and tables	
		into equations, interpret and	
		classify real-world data sets.	
Critical Thinking	Interpret mathematical	Content: Interpret parameters	Final Exam and Online
	models, such as formulas,	of linear, quadratic, piecewise,	Homework.
Empirical &	graphs, tables, and	power, exponential and	
Quantitative	schematics, and draw	logarithmic functions	
кеазопіпд	interences from them.	occurring in applications,	
		determine characteristics of	
		model behavior using the	
		properties of functions and	
		their graphs (slopes,	
		intercepts, local extrema,	
		etc.).	
		Instructional Strategies:	
		Online homework questions	
		asking students to convert	
		formulas graphs and tables	
		into qualitative descriptions	
Critical Thinking	Discern relationships and	Content: Fit given data to	Final Exam and Online
5	patterns in quantitative	linear, quadratic, piecewise	Homework.
Empirical &	data to arrive at informed	power, exponential and	
Quantitative	conclusions.	logarithmic functions.	
Reasoning		extrapolate and interpolate	
		based on the fit. construct	
		simple models based on	

		informal descriptions.	
		Instructional Strategies:	
		Asking students to translate	
		text descriptions of applied	
		problems and quantitative	
		data into tables, graphic and	
		analytic representations, use	
		these representations to	
		optimize parameters, predict	
		behavior or fill in missing data.	
Critical Thinking	Utilize appropriate	Content: Nonlinear functions	Final Exam and Online
	technology to enhance	and equations: features of	Homework which
Empirical &	mathematical thinking and	graphs, generalizing based on	include problems
Quantitative	understanding, to solve	features of graphs	requiring students to
Reasoning	mathematical problems,	(relationships between	use graphing utilities to
	and to judge the	turning points, extrema and	find a solution.
	reasonableness of the	direction of increase);	
	results.	introduction to functions and	
		graphs—choosing the	
		appropriate viewing window;	
		solving quadratic inequalities;	
		solving optimization problems	
		using a graph.	
		Instructional Strategy: Asking	
		students to analyze and	
		answer questions about	
		graphing calculator plots;	
		choose the appropriate	
		viewing window for a	
		function; trace intercepts and	
		extrema; use graph to solve	
		quadratic inequalities.	

Additional Course Outcomes:

- Interpret and use functional notation, express concepts and properties in functional notation, recognize and apply different types of functions including linear, polynomial, exponential and logarithmic.
- Determine key properties of functions from various representations, convert among the representations, and recognize common properties of different functions.
- Solve linear, quadratic and absolute value equations and inequalities, interpret solutions.

- Interpret numerical data and construct simple models, interpolate and extrapolate data, evaluate the meaning of results.
- Use graphing utilities to graph functions, solve equations, visualize and interpret data.
- Demonstrate mathematical reasoning skills and skills for presenting mathematical concepts and arguments.

Course Outline:

- Unit I Introduction to Functions and Graphs (7 hours)
 - Review sets of numbers; visualization of data; relations, functions, and their representations; the Midpoint Formula; function notation and its practical interpretation; types of functions and their rates of change; interval notation; where a function is increasing and decreasing; percent change.
 - <u>Optional:</u> Setting the viewing window on a graphing calculator; making a scatter plot on the graphing calculator representing a function on a graphing calculator.
- Unit II Linear Functions and Equations (7 hours)
 - Topics or techniques to be covered include: Linear functions and models; equations of lines; linear equations; intercepts and their practical interpretation; linear inequalities; piecewise-defined functions; absolute value equations; absolute value inequalities; direct variation;
 - <u>Optional</u>: Locating a zero of a function on a graphing calculator, applying the intersection of graphs method of solving equations (); solving equations with technology.
- Unit III Quadratic Functions and Equations (7 hours)
 - Quadratic functions and models; quadratic equations and problem solving; quadratic inequalities; complex numbers. Solving equations with technology; solving quadratic inequalities with technology.
- Unit IV Nonlinear Functions and Equations (7 hours)
 - Review all topics from prerequisite courses as needed; nonlinear functions and their graphs; polynomial functions and models; fundamental properties of polynomials; the Fundamental Theorem of Algebra. Discussion of rational functions and models as time permits. Discussion of inverse proportion (and polynomial and rational inequalities only as time permits).
 - <u>Optional:</u> Finding extrema on the graphing calculator.
- Unit V Exponential and Logarithmic Functions (7 hours)
 - Combining functions with algebraic operations; decomposing functions; inverse functions and their representations; inverse function notation and its practical interpretation; exponential functions and models; logarithmic functions and models; properties of logarithms; exponential and logarithmic equations. Instructors are strongly encouraged to have students use calculators during this unit. Discuss constructing nonlinear models only as time permits.
 - <u>Optional:</u> Graphing an inverse function; solving an exponential equation graphically.

- Unit VI Systems of Equations and Inequalities (3 hours)
 - Review or discuss functions and equations in two variables; systems of equations and inequalities in two variables as needed. Systems of linear equations in three variables.
- **Peer-Interview Activity** (1 hour)
 - Students will be paired up to participate in a peer-interview about a particular topic in mathematics. Choice of a topic and the specifics are left to the instructor.

Grading/Course Content which Demonstrates Student Achievement of Core Objectives:

The grading scale is as follows: 100-90% = A; 89-80% = B; 79-70% = C; 69-60% = D; 59-0% = F.

Summary of Course Exams, Quizzes, Assignments and Final				
Three in-class tests (15%/exam)	45% of final grade			
Quizzes	15% of final grade			
Homework and in-class activities	7% of final grade			
including written and oral assignments.				
Final	33% of final grade			
NOTE: If the final exam score is less than 50, the student will receive an "F" for				
the course regardless of his or her average.				