University of Houston-Downtown

Course Prefix, Number, and Title: MBIO 1310: Microbes and Society

Credits/Lecture/Lab Hours: 3/2/2

Foundational Component Area: Life and Physical Sciences

Prerequisites: Credit or enrollment in ENG 1301 **Co-requisites:** None

Course Description: An integrated lecture/laboratory course for non-science majors. This course will introduce the student to microorganisms including bacteria, fungi, protists and viruses and will explore their impact on humans. The numerous benefits of microorganisms (protection, food, genetic engineering, soil fertility, biofuels, recycling and bioremediation) will also be explored. Microorganisms that cause disease, food spoilage and corrosion will also be considered. *This course will not satisfy the microbiology requirement for nursing schools.*

TCCNS Number: N/A

Assigned Core	Learning Outcome	Instructional strategy or	Method by which students'	
Objective	Students will be able to:	content used to achieve the	mastery of this outcome will	
		outcome	be evaluated	
Critical Thinking	Utilize scientific processes	Lecture, Koch's Postulates	Students will write a formal lab	
	to identify questions	Lab Discussion of specific	report including background,	
Empirical &	pertaining to natural	examples of disease agents	question, hypothesis, materials	
Quantitative	phenomena.		and methods, and results and	
Reasoning		Lab discussion on the Effects	discussion on the validation of	
		of Antibiotics on inhibiting	the Koch's Postulates, which	
		bacteria; Case study on the	guide the definitive discovery	
		development of antibiotic	of the causative agent of a	
		resistance	disease.	
			Students will in teams to	
		Lecture on the role of bacteria	perform statistical analysis of	
		in food manufacture	quantitative data on the best	
		Lab discussion on Yogurt	antibiotic against a particular	
		Production	bacterium. Teams will	
			complete a worksheet showing	
			their calculations.	
			Students will demonstrate an	
			understanding of the role of	
			microbes in food production by	

Demonstration of Core Objectives within the Course:

			showing slides of stained bacteria found in prepared yogurt, and they will submit a worksheet which will be graded.
mpirical & Quantitative	Utilize scientific processes to develop hypotheses, collect and analyze data using quantitative and qualitative measures.	Six-week-long experiment demonstrating Agrobacterium tumafaciens as the causative agent of plant tumors (Koch's Postulates) Kirby Bauer lab technique to study the effects of specific antibiotics against BSL1 bacteria; Statistical analysis of data	Students will write a formal lab report including background, question, hypothesis, materials and methods, and results and discussion on the validation of the Koch's Postulates, which guide the definitive discovery of the causative agent of a disease. Students will in teams to perform statistical analysis of quantitative data on the best antibiotic against a particular bacterium. Teams will complete a worksheet showing their calculations.
mpirical &	Utilize scientific processes to effectively communicate the analysis and results using written, oral and visual communication.	Formal Lab Report on the Koch's Postulates experiment Debate: Genetic Engineering Demonstration of microscopic slides of bacteria found in prepared yogurt	Students will write a formal lab report including background, question, hypothesis, materials and methods, and results and discussion on the validation of the Koch's Postulates, which guide the definitive discovery of the causative agent of a disease.
			Students will research and debate the use of genetic engineering to modify foods or manufacture other items such as insulin. A rubric will be designed to evaluate the ability of the students to orally present (forum day) and debate the topic (debate day). Students will demonstrate an understanding of the role of

			showing slides of stained
			bacteria found in prepared
			yogurt, and they will submit a
			worksheet.
Teamwork	Collaborate in the	Debate: Genetic Engineering	Students will research and
	evaluation of the quality of		debate the use of genetic
	scientific evidence from	Group Analysis of Data from	engineering to modify foods or
	multiple perspectives	Lab Experiments on Control of	manufacture other items such
	toward the goal of reaching a shared objective.	Bacterial Growth	as insulin.
		In class forum on Global	Joint analysis of data collected
		Antibiotic Usage and	during experiments done to
		Resistance	test the effects of heat,
			ultraviolet radiation and pH on
			bacterial growth. Students will
			be tested on this topic. (A
			rubric will be designed to
			evaluate the ability of the
			students to orally
			present/debate the topic.)
			Students will research the use
			of antibiotics in the US and
			other developed and
			developing countries and
			present their findings in a
			forum.
			Students will in teams to
			perform statistical analysis of
			quantitative data on the best
			antibiotic against a particular
			bacterium. Teams will
			complete a worksheet showing
			their calculations.
L		I	

Additional Course Outcomes:

Students will

- Utilize the scientific process to identify questions pertaining to the role of microbes in daily life
- Utilize the scientific method to develop hypotheses
- Collect and analyze qualitative and quantitative data,
- Collaborate in the evaluation of the scientific evidence from multiple perspectives toward the goal of reaching a common conclusion,
- Communicate analyses and results using written and oral communication.

At the end of the course, the student should be able to

- Understand the scientific process used to solve microbially-related problems
- Apply scientific reasoning to explain microbial behavior
- Analyze the effects of microbes in food science, industry, and medicine
- Evaluate scientific data and report in written and oral form

Course Outline:

Lecture Topics

- The Microbial World
- Classification of Microbes, Microscopy
- Molecules of Cell, DNA Story
- Bacteria
- Viruses
- Protists
- Fungi
- Microbial Growth and Control of Growth
- Microbes and Food
- Microbes and Industry, Biotechnology
- Microbes and Agriculture
- Microbes and the Environment
- Diseases

Lab Topics

- Introduce Lab; Safety Info.
- Contamination Lab
- Vista
- Aseptic Transfer Discussion
- Aseptic Transfer, Streak Plate
- Use of Microscope
- Koch's Postulates
- Simple Stain
- Gram Stain
- View Structural Stains,
- Motility Test
- Throat Cultures
- Fungi, Protozoa
- Simulated Epidemic
- Physical Agents against Bacteria 11 A Heat
- Physical Agents against Bacteria 11 B UV
- Chem Agents and Antibiotics
- Biochemical Characteristics
- Slide Agglutination
- Microbiology of Food

11/16/2013

- Results of Yogurt Prep
- Microbiology of Water

Grading/Course Content which Demonstrates Student Achievement of Core Objectives:

Course Grade	A: 90-100	B: 80-89	C: 70-79	D: 60-69	F: 0-59		
Summary of Course Exams, Quizzes, Activities, and Final							
	Lecture Quizzes			10%			
	3 Lecture Exams			30%			
	2 Lecture Assignments			6%			
	In-class Debate			5%			
	In-class Forum			5%			
	Lecture	Final		6%			
	Lab Quizzes			6%			
	Lab Worksheets and Report			10%			
	Lab Final			10%			
	Attendance and Participation			5%			