University of Houston-Downtown

Course Prefix, Number, and Title: PHYS 1307: General Physics I

Credits/Lecture/Lab Hours: 3/3/0

Foundational Component Area: Life and Physical Sciences

Prerequisites: Credit or enrollment in MATH 1302 or the equivalent and enrollment in PHYS 1107.

Co-requisites: None

Course Description: This is the first in a two-part survey of general physics for science majors focusing on elementary principles of mechanics, heat and wave motion using elementary trigonometry and algebra. Topics include kinematics, dynamics of particles and rigid bodies; conservation of mass, momentum and energy; simple harmonic motion and characteristics of waves, mechanical and thermal properties of solids and fluids; and thermal properties, kinetics and dynamics of ideal gases. Credit for both PHYS 1307 and PHYS 2401 may not be applied toward a degree.

TCCNS Number: PHYS 1301

Demonstration of Core Objectives within the Course:

Assigned Core	Learning Outcome	Instructional strategy or content	Method by which students'	
Objective	Students will be able	used to achieve the outcome	mastery of this outcome will	
	to:		be evaluated	
Critical Thinking	Utilize scientific	The lecture presents theory from	Students' ability to understand	
	processes to identify	the perspective of the historical	phenomena is addressed	
Empirical &	questions pertaining	and mathematical development of	through exams which are based	
Quantitative	to natural	Physics. The question "Why?" is	on "word problems." These	
Reasoning	phenomena.	prominent in lecture. The lab	word problems are presented	
		component is tied to the lecture	as real-world situations with	
		material so that students can	information combining	
		address the "Why?" in lab.	experimental observation and	
		Topics discussed include the Laws	hypotheses. Students must	
		of Motion, Energy, Solids and	understand the correct	
		Fluids, Thermal Physics, Vibrations	question and apply the correct	
		and Waves.	mathematical tool to answer	
			the question.	
			Students will have exams in	
			which they have to solve	
			numerous problems covering	
			all material discussed during	
			class. The exams will be graded	
			for approach to solving the	
			problem and scientific	
			accuracy.	

Critical Thinking	Litiliza sajantifis	Ctudents must need and	Ctudents are given leb are stire!
Critical Thinking	Utilize scientific	Students must perform	Students are given lab practical
F	processes to develop	experiments in lab, make	exams where they must
Empirical &	hypotheses,	observations, collect data, calculate	arrange equipment, perform
Quantitative	collect and analyze	results, and generate graphs in the	experiments, collect data, and
Reasoning	data using	co-requisite 1107 laboratory on	calculate results. These
	quantitative and	topics of: linear, projectile, and	experiments involve some
	qualitative measures.	circular motion, gravity, collisions,	change from what the student
		Newton's laws of motion, friction,	has previously done so that the
		and waves: mechanical and	student must reason to a new
		acoustic.	approach and analysis to
			obtain the required results.
			Students will be assessed on
			their ability to recognize and
			correctly use the appropriate
			formula and draw correct
			conclusions.
Critical Thinking	Utilize scientific	Students must record procedures,	Typed laboratory reports are
	processes to	data, and observations in a bound	collected on a weekly basis and
Empirical &	effectively	notebook during lab. Then each	graded for content, style, and
Quantitative	communicate the	student must perform the required	correct analysis. Each student
Reasoning	analysis and results	analysis and generate multiple	typically generates over 50
	using written, oral and	graphs to present the results in a	pages of typed text each
Communication	visual communication.	convincing manner. All work must	semester. Students are often
		be documented in typed laboratory	approached during lab and
		reports that are written according	asked to make a defense of
		to publication standards.	their procedures (whether right
		Once in semester each student will	or wrong) and their
		be required to give oral/visual	calculations. Students are
		presentation in the lab on topic	expected to understand the
		covered. Presentations will be	experiments and are given
		evaluated for quality of	concepts and ideas to work
		communication and scientific	with instead of written
		accuracy using a rubric.	procedures and recipes.
		decardey using a rubrie.	Written lab reports will be
			evaluated for both scientific
			accuracy and quality of written
			communication using a rubric.
			Oral presentations will also be
			evaluated for quality of
			communication and scientific
			accuracy using a rubric.
			Written lab reports will be
			evaluated for both scientific
			accuracy and quality of written
			communication using a rubric.

Teamwork	Collaborate in the	In each lab session student teams	All students are asked to
	evaluation of the	perform experiments together with	submit a copy of their data
	quality of scientific	one specified piece of equipment.	before leaving the lab. If there
	evidence from	Students will test equations by	is a problem with the data,
	multiple perspectives	comparing observed and expected	students are asked to repeat
	toward the goal of	values.	the experiment or re-analyze
	reaching a shared		their data. Successful
	objective.		completion of the experiment
			is part of the lab grade. A
			portion of the student's grade
			will be based on the group
			completion of data tables.

Additional Course Outcomes: N/A

Course Outline:

Lecture:

- Mechanics, Motion in One Dimension
- Vectors and two-Dimensional Motion,
- The Laws of Motion,
- Energy
- Momentum and Collisions
- Rotational Motion and the Law of Gravity
- Rotational Equilibrium and Rotational Dynamics.
- Solids and Fluids
- Thermal Physics
- Energy in Thermal Processes
- Vibrations and Waves, Sound

Lab:

- Gravitational Acceleration
- Projectile Motion
- Force Table
- Atwood's Machine
- Static and Kinetic Friction
- Conservation of Mechanical Energy
- One-Dimensional Collisions
- Centripetal Acceleration
- Torque and Moment of Inertia
- Buoyancy
- Spring and Pendulum
- Standing Waves

Lecture: Grading/Course Content which Demonstrates Student Achievement of Core Objectives: Course Grade A: 90-100 B: 80-89 C: 70-79 D: 60-69 F: 0-59

C.		0.7075	2.000	
Summary of Course Exams, Quizzes, Activities, and Final				
	Partial Exams (3)		60%	
	Final		40%	

Lab: Grading/Course Content which Demonstrates Student Achievement of Core Objectives:

Course Grade

A: 90-100

B: 80-89

C: 70-79

D: 60-69

F: 0-59

Summary of Course Exams, Quizzes, Activities, and Final		
Lab and Related Report (7pts each/12 labs total)	84pts	
One lab report will be an oral presentation		
Exams (14 pts each/2 exams total)	28 pts	
Total	112 pts	