University of Houston-Downtown

Course Prefix, Number, and Title: PHYS 1308: General Physics II

Credits/Lecture/Lab Hours: 3/3/0

Foundational Component Area: Life and Physical Science

Prerequisites: PHYS 1307 and credit or enrollment in PHYS 1108. **Co-requisites:** None

Course Description: This is the second in a two-part survey of general physics for science majors focusing on elementary principles of electromagnetism, optics and modern physics using elementary trigonometry and algebra. Topics include static electric and magnetic fields and the motion of charged particles therein; induced electric and magnetic fields; DC and AC circuits; geometrical and physical optics; the concept of quantization and the properties of the atom and its nucleus. Credit for both PHYS 1308 and PHYS 2402 may not be applied toward a degree.

TCCNS Number: PHYS 1302

Assigned Core Learning Outcome		Instructional strategy or	Method by which students'		
Objective	Students will be able	content used to achieve the	mastery of this outcome will be		
	to:	outcome	evaluated		
Critical Thinking	Utilize scientific	The lecture presents theory	Students' ability to understand		
	processes to identify	from the perspective of the	phenomena is addressed through		
Empirical &	questions pertaining	historical and mathematical	exams which are based on "word		
Quantitative	to natural	development of Physics. The	problems." These word problems		
Reasoning	phenomena.	question "Why?" is prominent	are presented as real-world		
		in lecture. The lab component	situations with information		
		is tied to the lecture material	combining experimental		
		so that students can address	observation and hypotheses.		
		the "Why?" in lab.	Students must understand the		
		Topics discussed include	correct question and apply the		
		electricity, magnetism and	correct mathematical tool to		
		optics.	answer the question.		
			Students will have exams in which		
			they have to solve numerous		
			problems covering all material		
			discussed during class. The exams		
			will be graded for approach to		
			solving the problem and scientific		
			accuracy.		
Critical Thinking	Utilize scientific	Students must perform	Students are given lab practical		
	processes to develop	experiments in lab, make	exams where they must arrange		
Empirical &	hypotheses,	observations, collect data,	equipment, perform experiments,		
Quantitative	collect and analyze	calculate results, and generate	collect data, and calculate results.		

Demonstration of Core Objectives within the Course:

Reasoning	data using	graphs in the co-requisite 1107	These experiments involve some	
	quantitative and	laboratory on topics of:	change from what the student has	
	qualitative measures.	resistors, capacitors, circuits,	previously done so that the student	
		magnetism, wave optics,	must reason to a new approach	
		optical instruments and	and analysis to obtain the required	
		photoelectric effect.	results. Students will be assessed	
			on their ability to recognize and	
			correctly use the appropriate	
			formula and draw correct	
			conclusions.	
Critical Thinking	Utilize scientific	Students must record	Typed laboratory reports are	
	processes to	procedures, data, and	collected on a weekly basis and	
Empirical &	effectively	observations in a bound	graded for content, style, and	
Quantitative	communicate the	notebook during lab. Then	correct analysis. Each student	
Reasoning	analysis and results	each student must perform the	typically generates over 50 pages	
	using written, oral and	required analysis and generate	of typed text each semester.	
Communication	visual communication.	multiple graphs to present the	Students are often approached	
		results in a convincing manner.	during lab and asked to make a	
		All work must be documented	defense of their procedures	
		in typed laboratory reports that	(whether right or wrong) and their	
		are written according to	calculations. Students are	
		publication standards.	expected to understand the	
		Once in semester each student	experiments and are given	
		will be required to give	concepts and ideas to work with	
		oral/visual presentation in the	instead of written procedures and	
		lab on topic covered.	recipes. Written lab reports will be	
		Presentations will be evaluated	evaluated for both scientific	
		for quality of communication	accuracy and quality of written	
		and scientific accuracy using a	communication using a rubric.	
		rubric.	Oral presentations will also be	
			evaluated for quality of	
			communication and scientific	
			accuracy using a rubric.	
			Written lab reports will be	
			evaluated for both scientific	
			accuracy and quality of written	
			communication using a rubric.	

Teamwork	Collaborate in the	In each lab session student	All students are asked to submit a
	evaluation of the	teams perform experiments	copy of their data before leaving
	quality of scientific	together with one specified	the lab. If there is a problem with
	evidence from	piece of equipment. Students	the data, students are asked to
	multiple perspectives	will test equations by	repeat the experiment or re-
	toward the goal of	comparing observed and	analyze their data. Successful
	reaching a shared	expected values.	completion of the experiment is
	objective.		part of the lab grade. A portion of
			the student's grade will be based
			on the group completion of data
			tables.

Additional Course Outcomes:

Lecture: N/A Lab: N/A

Course Outline:

- Lecture:
- Electric Forces and Electric Field
- Electric Energy and Capacitance
- Current and Resistance,
- Direct Current Circuits
- Magnetism
- Induced Voltages and Inductance
- Alternating-Current Circuits and Electromagnetic Waves
- Reflection and Refraction of Light, Mirrors and Lenses
- Wave optics, Optical Instruments

Lab:

- Introduction to DC Circuits
- Equipotential Plots
- Kirchhoff's Rules
- RC Circuit Time Constant
- Electron Deflection Tube
- Frequency Dependence of R, L, and C
- RLC Series Circuit
- Induction, Oscilloscope, and RL Circuit
- Microwave I. Geometric Optics
- Microwave II. Wave Optics
- Lenses, Mirror, and Optical Devices
- Diffraction

Course G	rade A:	90-100	B: 80-89	C:	: 70-79	D: 60-69	F: 0-59	
	Summary of Course Exams, Quizzes, Activities, and Final							
Mid-term Exams (4 mid-terms/20 pts			ms/20 pts each)	80pts			
		Final				40 pts		
				Total		120 pts		

Lecture: Grading/Course Content which Demonstrates Student Achievement of Core Objectives: С

Lab: Grading/Course Content which Demonstrates Student Achievement of Core Objectives: A: 90-100 B: 80-89 C: 70-79 D: 60-69 F: 0-59 Course Grade

Jui	rse Gruue A	1. 90-100	D: 00-09	C	/0-/9	D: 00-09	r: 0-5
	Summary of Course Exams, Quizzes, Activities, and Final						
	Lab and Related Report (7pts each/12 labs total)				84pts		
	One lab report	will be an oi	ral presentation				
	Exams	(14 pts each	I/2 exams total)			28 pts	
				Total		112 pts	