University of Houston-Downtown

Course Prefix, Number, and Title: PHYS 2401: Physics I

Credits/Lecture/Lab Hours: 4/4/0

Foundational Component Area: Life and Physical Sciences

Prerequisites: Credit for MATH 2402 (or MATH 2412) and credit or enrollment in PHYS 2101 **Co-requisites:** None

Course Description: This is the first in a two-part survey of physics for science majors using calculus. Topics include kinematics and dynamics in one, two and three dimensions, statics, dynamics, potentials, conservation of energy and momentum (linear and angular), rotational kinematics and dynamics, oscillations, gravitation, fluid mechanics, thermal properties of matter, kinetic theory of gases and the first and second law of thermodynamics. Credit for both PHYS 1307 and PHYS 2401 may not be applied toward a degree.

TCCNS Number: PHYS 2425

ObjectiveStudents will be able to:content used to achieve the outcomemastery of this outcome will be evaluatedCritical ThinkingUtilize scientific processes to identify questions pertaining to natural phenomena.Lecture presentations and problem-based lab activities focus on theories in physics and on the historical and mathematical development of Physics. The question "Why?" is prominent in both lecture and lab.Students must solve real-world problems by combining experimental observation and hypothesis development.All theoretical discussion is based on Calculus. Topics discussed include the Kinematics, Laws of Motion, Energy, Solids and Fluids.Students must identify the correct approach to answer the question.Critical Thinking Providems by combining experimental observation and hypothesis development.Students must identify the correct question and devise the correct approach to answer the question.ReasoningAll theoretical discussion is based on Calculus. Topics discussed include the Kinematics, Laws of Motion, Energy, Solids and Fluids.Students will be subjected to examination in which they have to solve numerous problems covering all material discussed and demonstrating command of Calculus. The exams will be graded for approach to solving the problem and scientific accuracy.	Assigned Core	Learning Outcome	Instructional strategy or	Method by which students'	
OutcomeevaluatedCritical Thinking Empirical & Quantitative ReasoningUtilize scientific processes to identify questions pertaining to natural phenomena.Lecture presentations and problem-based lab activities focus on theories in physics and on the historical and mathematical development of Physics. The question "Why?"Students must solve real-world problems by combining experimental observation and hypothesis development.Reasoningnatural phenomena.and on the historical and mathematical development of Physics. The question "Why?" is prominent in both lecture and lab. All theoretical discussion is based on Calculus. Topics discussed include the Kinematics, Laws of Motion, Energy, Solids and Fluids.Students will be subjected to examination in which they have to solve numerous problems covering all material discussed and demonstrating command of Calculus. The exams will be graded for approach to solving the problem and scientific accuracy.	Objective	Students will be able to:	content used to achieve the	mastery of this outcome will be	
Critical Thinking Empirical & Quantitative ReasoningUtilize scientific processes to identify questions pertaining to natural phenomena.Lecture presentations and problem-based lab activities focus on theories in physics and on the historical and mathematical development of Physics. The question "Why?" is prominent in both lecture and lab. All theoretical discussion is based on Calculus. Topics discussed include the Kinematics, Laws of Motion, Energy, Solids and Fluids.Students must solve real-world problems by combining experimental observation and hypothesis development.Critical Thinking Quantitative ReasoningUtilize scientific processes to identify questions pertaining to natural phenomena.Lecture presentations and problem-based lab activities focus on theories in physics and on the historical and mathematical development of Physics. The question "Why?" is prominent in both lecture and lab. All theoretical discussion is based on Calculus. Topics discussed include the Kinematics, Laws of Motion, Energy, Solids and Fluids.Students must solve real-world problems by combining experimental observation and hypothesis development.Critical Thinking problemsUtilize scientify and on the historical and mathematical development of Physics. The question "Why?" is prominent in both lecture and lab.Students must solve real-world hypothesis development.Critical Thinking problems to solve numerous problems covering all material discussed and demonstrating command of Calculus. The exams will be graded for approach to solving the problem and scientific accuracy.			outcome	evaluated	
	Critical Thinking Empirical & Quantitative Reasoning	Utilize scientific processes to identify questions pertaining to natural phenomena.	Lecture presentations and problem-based lab activities focus on theories in physics and on the historical and mathematical development of Physics. The question "Why?" is prominent in both lecture and lab. All theoretical discussion is based on Calculus. Topics discussed include the Kinematics, Laws of Motion, Energy, Solids and Fluids.	Evaluated Students must solve real-world problems by combining experimental observation and hypothesis development. Students must identify the correct question and devise the correct approach to answer the question. Students will be subjected to examination in which they have to solve numerous problems covering all material discussed and demonstrating command of Calculus . The exams will be graded for approach to solving the problem and scientific accuracy.	

Demonstration of Core Objectives within the Course:

Critical Thinking	Utilize scientific	Students must perform	Students are given hands-on lab
	processes to develop	experiments in lab, make	practical exams where they must
Empirical &	hypotheses,	observations, collect data,	arrange an apparatus, perform
Quantitative	collect and analyze data	calculate results, and generate	experiments, collect data, and
Reasoning	using quantitative and	graphs, in the co-requisite	calculate results. These
	qualitative measures.	2101 laboratory, on topics of:	experiments involve changes
		linear, projectile, and circular	from what the student has
		motion, gravity, collisions,	practiced so that the student
		Newton's laws of motion,	must reason through a new set
		friction, and waves:	up to obtain the required results.
		mechanical and acoustic.	Students will be assessed on their
			ability to recognize and correctly
			use the appropriate formula and
			draw correct conclusions.
Critical Thinking	Utilize scientific	Students must record	Typed laboratory reports are
	processes to effectively	procedures, data, and	collected on a weekly basis and
Empirical &	communicate the	observations in a bound	graded for content, style, and
Quantitative	analysis and results	notebook during lab. Student	correct analysis. Written lab
Reasoning	using written, oral and	must perform the required	reports will be evaluated for both
	visual communication.	analysis and generate multiple	scientific accuracy and quality of
Communication		graphs to present the results in	written communication using a
		a convincing manner. All work	rubric.
		must be documented in typed	Oral/visual presentations will
		laboratory reports which are	also be evaluated for quality of
		written according to	communication and scientific
		publication standards. Students	accuracy using a rubric.
		are often approached during	
		lab and asked to make a	
		defense of their procedures	
		(whether right or wrong) and	
		their calculations. Students are	
		expected to understand the	
		experiments and are given	
		concepts and ideas to work	
		with instead of written	
		procedures and recipes. Once	
		in semester each student will	
		be required to give oral/visual	
		presentation in the lab on topic	
		covered. Presentations will be	
		evaluated for quality of	
		communication and scientific	
		accuracy using a rubric	

Teamwork	Collaborate in the	In each lab session student	All students are asked to submit a
	evaluation of the quality	teams must perform	copy of their data before leaving
	of scientific evidence	experiments together with one	the lab. If there is a problem
	from multiple	specified piece of equipment.	with the data, students are asked
	perspectives toward the	Students will work together to	to repeat the experiment or re-
	goal of reaching a	test equations by comparing	analyze their data. Successful
	shared objective.	observed and expected values.	completion of the experiment is
			part of the lab grade. A portion
			of the student's grade will be
			based on the group completion
			of data tables.

Additional Course Outcomes:

Course Outline:

Lecture:

- Mechanics, Motion in One Dimension,
- Vectors and two-Dimensional Motion,
- The Laws of Motion, Energy.
- Momentum and Collisions,
- Rotational Motion and the Law of Gravity,
- Rotational Equilibrium
- Rotational Dynamics.
- Solids and Fluids
- Thermal Physics
- Energy in Thermal Processes
- Vibrations and Waves
- Sound

Lab:

- Gravitational Acceleration
- Projectile Motion
- Force Table
- Atwood's Machine
- Static and Kinetic Friction
- Conservation of Mechanical Energy
- One-Dimensional Collisions
- Centripetal Acceleration
- Torque and Moment of Inertia
- Buoyancy
- Standing Waves

ceture. Graun	ang/ course content which beholistrates a				
Course Grade	A: 90-100	B: 80-89	C: 70-79	D: 60-69	F: 0-59
	Summary of Cou	irse Exams, Qui	zzes, Activities,	and Final	
	Mid-term Exams (27 points each)			84 pts	
	Fina	Final		40 pts	
	Total			124 pts	

Lecture: Grading/Course Content which Demonstrates Student Achievement of Core Objectives: С

Lab: Grading/Course Content which Demonstrates Student Achievement of Core Objectives:Course GradeA: 90-100B: 80-89C: 70-79D: 60-69F: 0-59

Jui	rse Grade	A: 90-100	D: 80-89	C: 70-79	D: 60-69	r: 0-5:
Summary of Course Exams, Quizzes, Activities, and Final						
	Lab and Related	Report (7pts	each/12 labs to	tal)	84pts	
	One lab repor	t will be an oi	ral presentatior	1		
	Exam	s (14 pts each	I/2 exams total)		28 pts	
		Tota	al de la companya de		112 pts	