University of Houston-Downtown

Course Prefix, Number, and Title: PHYS 2402: Physics II

Credits/Lecture/Lab Hours: 4/4/0

Foundational Component Area: Life and Physical Sciences

Prerequisites: Grade of C or better in PHYS 2401 and credit or enrollment in PHYS 2102. **Co-requisites:** None

Course Description: This is the second in a two-part survey of physics for science majors using calculus. Topics include electric charge, electric fields and potentials, Gauss' Law, capacitors and dielectrics, AC and DC electrical circuits, magnetic fields, the Biot-Savart Law, Faraday's Law, magnetic properties of matter, Maxwell's equations and electromagnetic waves and optics. Credit for both PHYS 1308 and PHYS 2402 may not be applied toward a degree.

TCCNS Number: PHYS 2426

Assigned Core		Learning Outcome	Instructional strategy or	Method by which students'		
	Objective Students will be able to:		content used to achieve the outcome	evaluated		
	Critical Thinking	Utilize scientific processes to identify	Lecture presentations and problem-based lab activities	Students must solve real-world problems by combining		
	Empirical &	questions pertaining to	focus on theories in physics	experimental observation and		
	Reasoning	mathematical developmental Physics The question		Students must identify the correct question and devise the		
			is prominent in both lecture and lab.	correct approach to answer the question.		
			All theoretical discussion is based on Calculus. Topics	Students will be subjected to examination in which they have		
			discussed include the Electric Fields, Electric Potential and	to solve numerous problems covering all material discussed		
			Currents; Magnetic Fields, Inductance and	and demonstrating command of Calculus . The exams will be		
			Electromagnetic Waves; Light and Optics.	graded for approach to solving the problem and scientific		
	Critical Thinking	Utilize scientific	Students must perform experiments in lab, make	Students are given hands-on lab		
	Empirical &	hypotheses,	observations, collect data,	arrange an apparatus, perform		
	Quantitative Reasoning	collect and analyze data using quantitative and qualitative measures	calculate results, and generate graphs, in the co-requisite	experiments, collect data, and calculate results. These		
			Ohm's Law, Kirchhoff's Rules,	from what the student has		

Demonstration of Core Objectives within the Course:

			-	
		Circuits, Geometric Optics,	practiced so that the student	
		Wave Optics, Lenses, Mirror,	must reason through a new set	
		and Optical Devices, Diffraction	up to obtain the required results.	
		and Interference.	Students will be assessed on their	
			ability to recognize and correctly	
			use the appropriate formula and	
			draw correct conclusions.	
Critical Thinking	Utilize scientific	Students must record	Typed laboratory reports are	
	processes to effectively	procedures data and	collected on a weekly basis and	
Empirical &	communicate the	observations in a bound	graded for content style and	
Quantitative	analysis and results	notebook during lab Student	correct analysis Written lab	
Reasoning	using written oral and	must perform the required	reports will be evaluated for both	
Reasoning	visual communication	analysis and generate multiple	scientific accuracy and quality of	
Communication	visual communication.	analysis and generate multiple	written communication using a	
Communication		graphs to present the results in	whiten communication using a	
		a convincing manner. All work		
		must be documented in typed	Oral/visual presentations will	
		laboratory reports which are	also be evaluated for quality of	
		written according to	communication and scientific	
		publication standards. Students	accuracy using a rubric.	
		are often approached during		
		lab and asked to make a		
		defense of their procedures		
		(whether right or wrong) and		
		their calculations. Students are		
		expected to understand the		
		experiments and are given		
		concepts and ideas to work		
		with instead of written		
		procedures and recipes. Once		
		in semester each student will		
		be required to give oral/visual		
		presentation in the lab on topic		
		covered. Presentations will be		
		evaluated for quality of		
		communication and scientific		
		accuracy using a rubric		
Teamwork	Collaborate in the	In each lab session student	All students are asked to submit a	
realitivorit	evaluation of the quality	teams must perform	conv of their data before leaving	
	of scientific evidence	experiments together with one	the lab If there is a problem	
	from multiplo	specified piece of equipment	with the data students are asked	
	nom multiple	Specified piece of equipment.	to report the overriment or re	
	perspectives toward the	students will work together to	to repeat the experiment of re-	
	goal of reaching a	test equations by comparing	analyze their data. Successiul	
	shared objective.	observed and expected values.	completion of the experiment is	
			part of the lab grade. A portion	
			of the student's grade will be	
			based on the group completion	
			of data tables.	

Additional Course Outcomes:

Lecture: N/A Lab: N/A

Course Outline:

Lecture:

- Electric Fields and Gauss Law,
- Electric Potential
- Capacitance and Dielectrics
- Current and Resistance
- DC Circuits
- Magnetic Fields
- Sources of the Magnetic Field
- Faraday's Law
- Inductance AC Circuits
- Electromagnetic Waves
- Principles of Ray Optics
- Image Formation
- Wave Optics
- Diffraction Patterns and Polarization.

Lab:

- Introduction to DC Circuits
- Equipotential Plots
- Kirchhoff's Rules
- RC Circuit Time Constant
- Electron Deflection Tube
- Frequency Dependence of R, L, and C
- RLC Series Circuit
- Induction, Oscilloscope, and RL Circuit
- Microwave I. Geometric Optics
- Microwave II. Wave Optics
- Lenses, Mirror, and Optical Devices
- Diffraction

Lecture: Grading/Course Content which Demonstrates Student Achievement of Core Objectives: *Course Grade* A: 90-100 B: 80-89 C: 70-79 D: 60-69 F: 0-59

urse Gruue	A. 90-100	D: 00-03	C: 70-79	D: 00-09	F: U-5	
	Summary of Course Exams, Quizzes, Activities, and Final					
Partial Exams				60%		
Final Exam				40%		
		Tot	al	100%		

Course Grade		A: 90-100	B: 80-89	С:	70-79	D: 60-69	F: 0-59
Summary of Course Exams, Quizzes, Activities, and Final							
Lab and Related Repor		lated Report (7pts	each/12 labs to	tal)	84pts	84pts	
	One lab report will be an oral presentation						
		Exams (14 pts each	/2 exams total)			28 pts	
		Tota	I			112 pts	

Lab: Grading/Course Content which Demonstrates Student Achievement of Core Objectives: